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BOUNDS FOR TREASURY BOND FUTURES 

PRICES AND EMBEDDED DELIVERY OPTIONS: 
Theory And Empirical Analysis 

 
ABSTRACT 
The delivery options in Treasury bond futures are difficult to price. A recursive use of the 
lattice model is unavoidable for valuing such options, as Boyle (1989) demonstrates. As   
a result, an accurate valuation of these delivery options is very expensive. In this paper,  
we derive upper bounds of these embedded options using an American option pricing 
technique. These upper bounds are then translated into a lower bound of the Treasury 
bond futures price. The popular cost of carry model is shown to be an upper bound of the 
Treasury bond futures price. These bounds are then tested empirically for the period from 
January 1987 till December 1991 using a two-factor Cox-Ingersoll-Ross model of the 
term structure. 



                                               

I.  INTRODUCTION 
 
The delivery options in Treasury bond futures are generally known as the quality option 
and three timing options: the accrued interest option, the wild card option, and the 
end-of-month option. The quality option gives the short the right to deliver any eligible 
bond (no less than 15 years to maturity or first call) and various timing options give the 
short the flexibility of making the delivery any time in the delivery month. The 
end-of-month option refers to the deliveries occurring at the last 7 business days in the 
delivery month when the futures market is closed to trading. For the remaining days of 
the delivery month, the wild card option refers to about 6 hours from 2:00 p.m. to 8:00 
p.m. (Chicago time) when the futures market is closed while the accrued interest option 
refers to the period from 7:20 a.m. to 2:00 p.m. when both futures and its underlying 
bond markets are open. 

Delivery options in T bond futures are difficult to price. A recursive use of the 
lattice model is unavoidable for valuing such options, as Boyle (1989) demonstrates. As a 
result, an accurate valuation of these delivery options is very expensive. The goal of this 
study is therefore to derive fast bounds of these options and further to provide a lower 
bound for the T bond futures price. These bounds can be computed quickly and provide a 
crude conservative estimate of the T bond futures price. 

An early discussion of the valuation of the quality option appears in Cox,   
Ingersoll, and Ross (1981) in which they state that their valuation can be applied to 
futures with the quality option when the single spot bond price is replaced with the 
minimum from the deliverable set. Jones (1985) argues that although there are multiple 
bonds eligible, bonds with extremely high and low durations are the ones to be delivered. 
His argument holds if the yield curve is flat. If the yield curve is not flat, then durations 
of different maturity bonds are not directly comparable and therefore his extreme 
duration rule fails. Hemler (1988) uses Margrabe’s (1978) exchange option formula to 
price the quality option but the pricing formula becomes intractable as the number of 
deliverable bonds increases. Carr (1988) was the first to use factor models to price the 
quality option and Carr and Chen (1996) extend the Carr model to include a second factor. 
Ritchken and Sankarasubramanian (1992) use the Heath-Jarrow-Morton (1992) 
framework to find the quality option value. Livingston (1987) analyzes the quality option 
on the forward contract. 

Timing options in general have no closed form solutions and are therefore studied 
with lattice methods. Kane and Marcus (1986) lay out a general framework for analyzing 
the wild card option. In their analysis, discounting is not considered in the wild card



period. Broadie and Sundaresan (1987) develop a lattice model to value the end-of-month 
option. Their focus is strictly on the futures price in the end-of-month period.      
Boyle (1989) uses a two period model to show that the timing option could have a 
significant impact. His analysis assumes constant interest rates and does not directly 
apply to T bond futures. 

Empiricists in general agree that the quality option has a non-trivial value1. 
However, unlike the evidence for the quality option, the evidence for the timing option is  
not so clear. This is because most studies do not distinguish between the quality option 
value and the value from other timing options, let alone values among various timing 
options2.  In this paper, we derive an upper bound for each timing option separately. 
Combining these upper bounds, we can establish a lower bound for the futures price.  
Since the cost of carry model provides an upper bound for the futures price, we can 
bound the futures price. We then provide empirical results to show that these bounds are 
very tight —  about 2% up and below the futures price.  

The paper is organized as follows. The next section provides the theoretical 
analysis and derives upper bounds for various delivery options and further shows the 
upper and lower bounds of the futures price. Section III contains an empirical study 
where a two factor equilibrium term structure model is explicitly implemented to 
investigate the magnitude of each timing option. Finally, the paper is concluded in 
Section IV. 

 
II    BOUNDS OF DELIVERY OPTIONS AND FUTURES PRICE 
 
The delivery options are known as the quality option and three timing options. The short 
of the futures contract has the right to choose the cheapest bond to deliver as well as to 
deliver at any time in the delivery month. The short can make a delivery even when the 
futures market is closed. At the end of the delivery month, for 7 business days, the futures 
market is closed but the short can still make a delivery. This is understood as the 
end-of-month timing option. For the remaining about 15 business days in the delivery 
month, the short can deliver either between 7:20 a.m. and 2:00 p.m. when both the futures 
market and the underlying bond market are open or till 6 hours after the futures market is  
closed.   The former timing option is called the accrued interest timing option and the

                                                 
1 See, for example, Carr and Chen (1996), Kilcollin (1982), Benninga and Smirloc 
(1985), Kane and Marcus (1986), and Hedge (1990). 
2 See, for example, Arak and Goodman (1987), Hedge (1988), Gay and Manaster (1986). 



 
latter timing option is also known as the daily wild card play. The following pic ture 
graphically explains various timing options. 
 

 
 
The last 7 business days is the end-of-month period. Throughout the paper we use v for 
the starting time and T for the ending time of this period. For the rest of the delivery 
month, there are two sections of each day, the accrued interest period and the wild card 
period. The wild card period for each day will be labeled u and u+h. The notation and  
symbols used in the paper are also summarized as follows: 
 

 
 
Before we start our analysis, we need Jamshidian’s separation theorem (1987) and     
his definition of the forward measure. 
 
Theorem 1 (Jamshidian 1987) 
Let P be the price of a pure discount bond at time t delivering $1 at some future date    
T and follow the dynamics:



 

 
 
where r is the instantaneous risk-free rate, b is a maturity dependent volatility parameter,  

and d
^

W  is Winner differential under the risk-neutral space. Then the forward measure 
is defined as: 
 

 
 

where dtbWdWd Tttt ,
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+=  . Any discounted expected payoff of an asset can be 
separated into a product of the pure discount bond price and the forward price of the 
asset, that is: 
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
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tTt dwwrexp,δ and ( )[ ]TXEt  computes the forward price of X. 

 
A simple proof of this theorem is given in an appendix while the original proof is  
available in Jamshidian (1987). 
 
A. The Quality Option 
In the absence of all timing options, the quality option gives the short a right to deliver 
the cheapest bond only at maturity, T, and the short receives the following payoff: 
 

 
 
Note that the accrued interests of both bond and futures contracts are equal and canceled. 
Since the delivery value of Eq 1 has to be identically 0 for all states, we can solve for the 
futures price at maturity as: 
 

 
 



and today’s futures price is merely a risk-neutral expectation of this payoff: 
 

 
 

Note ( ) ( )[ ]TQEt t 1

^

1 =Φ is the futures price of the first bond with no option and ( )tΦ is the 
futures price of the cheapest bond at maturity. This result has been shown previously by 
Carr (1988) and other authors. This equation says that the futures contract with the 
quality option is equivalent to a futures contract without the quality option (only bond 1 
is eligible for delivery) with an exchange option held by the short. 

Eq 3 is correct only if marking to market exists throughout the life of the futures 
contract. Unfortunately, in the last 7 business days of the delivery month, the futures  
market is not open and the futures contract is not marked to market. The futures price 
used for settlement in this period is the last settlement price at the beginning of the 7-day 
period. Since the futures price is already determined, the actual payoff at the last delivery 
day, T, is not necessarily 0. The short can actually gain or lose. To avoid arbitrage, the 
futures price at the beginning of the 7-day period should be set so that the expected 
present value of payoffs at maturity is 0. Under this circumstance, the futures price at the 
beginning of the 7-day period is a forward price, not a futures price. Formally, the futures  
price at the beginning of the end-of-month period, v, should be so set that: 

 

 
 
whereδ is the stochastic discount factor assumed to be strictly less than 1. Using 
Theorem 1, we can then write: 
 

 
 



and the futures price at time v can be written as: 
 

 
 
where ( ) ( )vqqK ii Φ−= 1  . Note that ( ) ( )[ ]TQEv v 11 =Ψ  is the forward price of the first 
bond. The interpretation of this result is similar to that of Eq 3, except that the risk  
neutral measure is replaced by the forward measure defined in Theorem 1 and the futures  
price becomes the forward price. However, unlike Eq 3, the futures price at time v has no  
easy solutions, because it appears on both sides of the equation. This futures price has to 
be solved recursively using a lattice method, as suggested by Boyle (1989). That is, we 
first choose an initial value for the futures price at time v, calculate payoffs at various 
states at maturity T, and then work backwards along the lattice. We adjust the futures 
price until the discounted payoff computed from the lattice is 0. Once the futures price at 
time v is set, we can then travel back along the lattice and use risk neutral probabilities to  
find the futures at any time3

 

With the presence of the end-of-month timing option, the futures price computed 
by Eq 6 is an overestimate because the short has additional flexibility of choosing the 
best timing. If the short is allowed to delivery any time in this 7-day period, then we need 
to compare the expected present value of future payoffs with the current delivery value. 
Higher current delivery value will trigger early deliveries. This is very similar to the 
American option pricing methodology where the intrinsic value is compared by the 
expected present value of future payoffs. 

 
B. The Accrued Interest Timing Option 
The accrued interest timing option refers to the flexibility for the short to deliver the 
cheapest bond any time in the delivery month when both futures and spot markets are 
open. This is everyday from 7:20 a.m. to 2:00 p.m. (Chicago time) from the first day of 
the delivery month to right before the end-of-month period. Since the futures market is  
open, the futures contract is marked to market and deliveries can take place any time. As  
a result, the futures price can never be greater than the cheapest to delivery bond price. If 
the futures price were greater than the cheapest bond price, then deliveries would take

                                                 
3 The futures price becomes a forward price also in each of the wild card periods. The 
recursive use the lattice model is required for the daily wild card periods. 



 
place instantly. The short will sell the futures, buy the cheapest bond, make the delivery, 
and earn an arbitrage profit. Formally, 
 

 
 
Therefore, the futures price in the period where both markets are open must be less than 
the cheapest to delivery bond price to avoid arbitrage. On the other hand, if the futures 
price is lower, one can long futures and short spot but the delivery will not occur because 
the short position of the futures contract will lose money if he makes a delivery. 
Consequently, the delivery will be postponed and there is no arbitrage profit to be made.  
If the futures price is always less than the cheapest to delivery bond price (adjusted by its  
conversion factor), the delivery payoff now is negative as opposed to 0 at the end. As a 
result, the short will never deliver until the last day. Consequently, the accrued interest 
timing option has no value. We restate this result in the following proposition. 
 
Proposition 1 
The accrued interest timing option without the wild card and end-of-month options has 
no value. 

 
 
The existence of the other timing options will lower the current futures price, further 
reducing the incentive for the short to deliver early. We state this result in the following 
Corollary. 
 
Corollary 1-1 
The accrued interest timing option with the wild card and end-of-month options has no 
value. 

  
 
While the accrued interest timing option is worthless, the timing options at the end-of- 
month and the wild card periods are valuable. When the futures market is closed, there is  
no marking to market in the futures market and the futures contract becomes a forward 
contract. Boyle (1989) has demonstrated that in a case of forward contracts timing 



options will have value. We shall extend Boyle’s analysis to stochastic interest rates so 
that we can evaluate T bond futures timing options. 
 
C. The End-of-month Timing Option 
Without the end-of-month timing option, we know that the futures price should be set 
according to Eq 6. With the end-of-month timing option, deliveries can occur any time in  
the end-of-month period as long as the current delivery payoff is more than the present 
value of the expected payoff.  

For both quality and timing options to exist, any higher delivery payoff will 
replace the present value of the expected payoff, like the early exercise of an American 
option. The futures price at the beginning of the period needs to be so set that the 
expected discounted payoff is nil. As a result, if we can identify a function that is always 
greater than both the delivery payoff and the discounted present value, this function is  
guaranteed to have a positive present value at time v. 

The upper bound function is given as follows: 
 

 
 
where δ is the stochastic discount factor which is assumed to be strictly less than 14. This 
value is greater than the present value of the delivery payoff at any time [ ]Tvt ,∈ : 
 

 
 
 
The second to last line of the above equation holds through using Jensen’s inequality and 

( )[ ] ( )tQTQE iiTtt <,

^

δ 5.

                                                 

4 Note that [ ]TttTt EP ,

^

, δ=  is the pure discount bond price of $1.  
5 Let a be the accrued interest. Then, by the martingale property of any traded asset, 

( )[ ] ( ) ( ) ( )tatQTaPTQE iiiTtiTtt +=+ ,,

^

δ  . Since the accrued interests are linear but 
discounting is not, we can show that with normal interest rate levels, the following 

relationship, ( )[ ] ( )tQTQE iiTtt <,

^

δ  , holds. 



Eq 9 shows that the proposed function is greater than the delivery at any time. For the 
proposed function to be an upper bound, we need to also show that the function has a 
higher value at an earlier time than at a later time. That is: 
 

 
 
Since the function is an upper bound, its value at the beginning of the end-of-month 
period, v, should be positive: 
 

 
 
This implies that the futures price should be bounded from below as follows: 
 

 
 
where 
 

 



Note that the second inequality holds becauseδ is strictly less than 1. Therefore, the right 
hand side of the above equation is a lower bound. If we express it differently, 
 

 
 
then bracketed term of the above equation is an upper bound of the end-of-month option.  
We state this result in a following proposition. 
 
Proposition 2 
The end-of-month timing option is bounded from above by:6

 

 

 
 
Since K is always positive, if we ignore the time value (i.e. ∆  =1), then the upper bound 
can be written as: 
 

 
 

 
It is interesting to note that the end-of-month option has value even if there exists no  
quality option. When there is no quality option but the timing option is allowed, the 
delivery may occur early. The short always compares the delivery payoff ( ) ( )tQqv −Φ  
where ( )Tvt ,∈   with the expected present value of the delivery payoff at maturity 

( ) ( )( )[ ]TQqvE Ttt −Φ,

^

δ  . We can show that: 
 

 
 

                                                 
6 This upper bound contains both the quality option and the end-of-month timing option 
values. 



Since the direction of the inequality can go either way, it is likely that early deliveries can 
take place. This demonstrates that the timing option does have value even in the absence 
of the quality option. The difference between the first two terms is ( ) ( )taTaP Tt −,   where  

a is the accrued interest and the difference of the last two terms is ( ) ( )vP Tt Φ− ,1  . As a 
result, whether or not deliveries will occur early depends upon which effect is larger. This 
result should not be confused with the result from Boyle (1989) where the timing option 
is defined differently. 
 
D. The Wild Card Timing Option 
In addition to the end-of-month period where the futures market is closed but the bond  
market is open, there is a 6 hour period every day for about 15 days where the futures 
market is also closed. This is called the daily wild card timing option. The wild card 
option is different from the end-of-month option in that the futures market will reopen 
after the wild card period and the futures contract will be marked to market. If bond  
prices drop in the wild card period, given that the futures price is fixed, the short can 
benefit from delivering a cheaper bond. However, the short can equally benefit from the 
marking to market when the futures market reopens. As a result, the incentive for the 
short to deliver in the wild card period is minimal. It has to be case where the payoff  
from immediate delivery exceeds the expected present value of marking to market; or the 
short will not deliver early in the wild card period. 

At the end of each wild card period, u +h , the short decides whether or not to  
deliver by comparing the payoffs between marking to market and delivery: 
 

 
 
If ( )hu +Φ  is small, then the marking to market payoff will outweigh the early delivery 
payoff and the wild card option will have no value. As a result, if we substitute a low 
enough value for ( )hu +Φ  , we can always eliminate the wild card value. This is a useful 
result because if the upper bound of the end-of-month option has already reduced the 
futures price at the beginning of the end-of-month period to a low enough value, then this  
end-of-month upper bound includes not only the value of the end-of-month option but all 
the wild card options. As we shall present our empirical results in the next section, this is  
precisely the case for the 87-91 period. 



It is interesting to note that the wild card option is completely induced by the 
conversion factor. If there were no conversion factor, the wild card option would have no  
value. Suppose there were no conversion factor. Then the payoff of the delivery at any 
time, ( )huut +∈ , , in the wild card period would be: 
 

 
 
and the marking to market value at the end of the period is: 
 

 
 
which is always greater than the delivery payoff at the end of the wild card period. The 
expected present value taken at time t of this payoff is always greater than the delivery 
payoff at time t (ignoring time value): 
 

 
 
Therefore, the wild card option has no value. Note that when the conversion factor did 
not exist, the futures price would be set differently. And this different futures price will 
eliminate all incentives of early deliveries in the wild card period. 
 
E. The Cost of Carry Model  
After the lower bound of the futures price been derived, in the next proposition, we show 
that the cost of carry model provides an upper bound for the futures price. The well- 
known cost of carry formula is the following: 
 

 
 
where Q* , q* , and a* are quoted price, conversion factor, and accrued interest of the 
cheapest bond at time t. Rearrange terms to get: 



 

 
 
As we can see, the cost of carry model is equal to a forward expectation of the payoff.  
The futures price without the timing options is a risk-neutral expectation of the payoff 
(see Eq 3). The last inequality is obtained due to the following: 
 

 
 
This is easy to see because when r increases (decreases), both discount factor, δ , and all 
bonds, Q’s, decrease (increase), and the sign of the covariance is therefore positive. Note 
that the futures price without timing options is already an upper bound, the cost of carry 
model used by practitioners is a more conservative upper bound of the futures price. We 
state the result in the following proposition.  
 
Proposition 5 
The futures price is bounded from above by the cost of carry model 

 
 
III  EMPIRICAL STUDY 
 
A. Methodology 
In this section, we empirically examine the magnitude of each bound using a two factor 
CIR model. We use the two factor model of the following kind:7

                                                 
7 This two factor model is adopted by a number of authors. See Chen and Scott (1992), 
Turnbull and Milne (1992), Langetieg (1980), Hull and White (1990) 



Eq 24 21 yyr +=  
 

where each factor follows a square root process: 
 

Εq25 
∧

++−= jtjtjjtjjjjjt Wdydtydy σλκθκ ))((  

 
where j=1,2. The parameters κ ,θ , and δ  are constants. The parameterλ  is a constant 
under log utility. This two factor model has been estimated by Chen and Scott (1993) 
with a weekly data set from 1980 to 1988. Their two factor model fits the yield curve 
reasonably well (for both in sample, 1980-88, and out of sample, 1989-91, periods).  
Three month, six month, five year, and the longest maturity Treasury issues are used to 
estimate the parameters for the two factor model as follows: 
 

   
 
We choose the bond with the largest conversion factor as our primary bond to deliver and  
calculate its futures price using the two factor version of the CIR model (1981). The 
quality option represents the option for the short to exchange a cheaper bond for this 
bond at delivery. Various timing options give the short additional flexibility of choosing 
the best timing. Although various bounds can be calculated using bivariate integrals, we 
choose to use a lattice model for those bivariate integrals are complex and not necessarily 
more efficient. 

To calculate the upper bound value for the end-of-month option for any given     
time 0t  prior to v, we need to calculate the following expectation:   

 

 
 
The lower bound considering only the end-of-month option is therefore: 
 

 
. 
. 
. 
 
 
 
 
 
 



Like any lattic e pricing approach, we need to jump to the end of the lattice which is the 
end of the delivery month, T. At this terminal date, we need to compute the payoff, 
max ( ) ( ){ }ii KTQTQ −−1 . for all the states. Note that the strike price K contains ( )vΦ   
the futures price at time v, which is not observable at time T. We use the futures price 
with the quality option as an approximation. As we shall see later, this approximation 

works very well. As a result, we need to first calculate ( ){ }[ ]iiv qTQE /min
^

using the lattice 
and then use the result to replace ( )vΦ  in K. Other than calculating the risk neutral 
expected value of the payoff, we also need the first bond price ( )TQ1 and the discount 

factorδ  to compute ( )[ ] ( )vTQEv 11

^

Φ= and Tv ,∆ . After all values are computed for time v, 

we then work backwards along the lattice till date 0t  . Since the bond prices at time T 
need to be quoted prices, we need to adjust the CIR formula values by the accrued 
interest for all the bonds at all the states. 
 

Between the beginning of the end -of-month period, v, and the end of the last wild 
card period, u+h, is one accrued interest period. In this period, there is no option value to 
be computed and marking to market suggests that the futures price should be calculated 
directly from the risk neutral expectation. 

As noted earlier, the wild card value can be ignored if the lower bound of the futures 
price at the beginning time of the end-of-month period, v, is already low enough. That is, 
if we use the lower bound for the end-of-month option, Eq 27, to substitute for ( )hu +Φ  , 
the loss of the wild card value is translated into the end-of-month option. In other words, 
we can efficiently incorporate the wild card value into the lower bound for the 
end-of-month option. If the wild card value is eliminated completely by this substitution, 
then the lower bound for the end-of-month option becomes a lower bound for both 
end-of-month and wild card options. As we shall see below (subsection C), this is indeed 
the case for the period we examine. 

Finally, the cost of carry model of Eq 22 is computed to compare with the futures 
price with only the quality option, i.e. Eq 3, and the actual futures price.  

 
B. Data 
The period of our study is from January, 1987 through December, 1991. We select 
weekly futures prices that have 6 weeks to 4½  months to maturity from the CBOT daily 
price data set. Since we focus on the futures contracts from March 1987 through 
December 1991, (20 contracts in total), our weekly observations start 1/8/87 and end 
10/30/91. 
 
 
 
 
 
 
 



The cost of carry model requires the knowledge of all deliverable bonds at the trade 
date. We collect all deliverable bonds from the Wall Street Journal for all the trade dates. 
We use the average of the bid and ask for the bond price. We also collect the three-month 
T bill rates for the cost of carry model. There are about 30 bonds for any given trade date.. 
Conversion factors are computed by the CBOT formula. 

 
We assume no gap between the close of the bond market for any given day and the 

open of the futures market in the next morning. As a result, in order to correctly date all 
the timing periods in the lattice, we have to count the number of trading days. As been 
pointed out previously, there are about 22 trading days in a month. The last 7 days 
attribute to the end-of-month period and each of the remaining 15 days has about 6 hours 
for the day period where both bond and futures markets are open and another about 6 
hours for the night period where only bond market is open. In order to accurately 
calculate various timing option values, the time to maturity in this study is not measured 
by calendar days but by business days8  Accurate day count is necessary because we need 
to calculate expectations at various times. 

 
C. Results 
Table 1 presents results in averages for the 20 contracts (8703 through 9112) studied in 
the paper. The first 3 columns of Table 1 present actual futures prices, lower bound 
futures prices using Eq 27 which considers only the end-of-month option, and upper 
bound futures prices using Eq 21 which is the cost-of-carry model. The average of the 
whole period is given at the bottom of the table. The cost of carry model is on average 
2% higher than the actual futures price while the futures price with the end-of-month 
bound is 2% lower than the actual futures price. Daily prices of these three series are 
plotted in Figure 1. Since the futures price with only the quality option should be a tighter 
upper bound, we report this result using Eq 3 in column 4. It is seen that the futures price 
with only the quality option not only provides a tighter upper bound, it also approximates 
the actual futures price amazingly well. For all 20 contracts together, the average futures 
price with the quality option is 92.9091 which is less than 50 basis points higher than the 
average actual futures price. This result supports Carr and Chen (1996) in which the 
value of the quality option should explain most of the total delivery option value. It also 
supports the evidence that the cost-of-carry model is insufficient to explain the delivery 
option value. 
 
 
 
 
 
 
 
 
 

                                                 
8 That is, we do the business day count between trade day and the last day of the delivery 
month and assume 252 trading days for a given year. 



 
Since the true futures price contains all embedded options, the total value of timing 

options can be implied by subtracting the actual futures price from the futures price with 
the quality option, i.e., subtracting (1) from (4)9 The results are reported in column 5. As 
we have argued, this value is quite small. Nonetheless, an average of 70 basis points is 
not a negligible quantity. 

The end-of-month option bound values using Eq 26 are given in column 6. This 
value includes both the quality option and the timing option values. It is difficult to 
separate these two values because there is no consistent way to measure the quality 
option10

 It is seen in Figure 1 that the lower bound for the futures price provided by this 
upper bound is conservative enough to include all daily wild card values. And the bound 
is as tight as the cost of carry model, about 2% on average lower than the actual futures 
price. 

The last column reports wild card bound values. It is clear that if we can use a lower 
value for ( )hu +Φ  , then the wild card option is included in the end-of-month bound. 
 
IV  CONCLUSION 
 
In this paper, we derive lower and upper bound formulas for the Treasury bond futures 
price. The lower bound of the futures price is obtained by summing all upper bounds for 
the delivery options. The cost of carry model is found to be an upper bound of the futures 
price. These bounds provide investors with efficient range of how much futures prices 
can move. In a sample period of 1987-1991, the cost of carry model is found to be 2% 
above the actual futures price and the lower bound is found to be 2% below. A tighter 
upper bound which is the futures price with the quality option is found to approximate the 
actual futures price extremely well. On average, the approximation is above the actual 
futures price by only 50 basis points. 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9 The futures price with the quality option sometimes is less than the actual futures price.  
In this case, the timing option value is recorded as 0. 
10 Carr and Chen (1996) measures the quality option value by looking at the difference 
between column 3 and column 4 in the Table. The quality option value, on the other hand, 
can be defined as the difference between the futures price without the quality option and 
the futures price with the quality option. Then, there is more than one measure for the 
quality option. 



 
 

As opposed to recursively using the lattice model to compute the true futures 
price, the bounds provided in the paper can be computed quickly and accurately. Thus, 
these bounds can provid e traders with a useful approximation of the true futures price. 



APPENDIX 
 
Theorem 1: Forward Measure and Separation Theorem 
The separation theorem states that: 

 
 

Since ( )[ ] ( )tXTXE Ttt =,

^

δ , the forward expectation gives the forward price. From the 
above change of measure, it is clear that the Radon-Nykodim derivative is: 
 

 
 
For notational convenience, we use subscripts for partial derivatives and move time 
indexes inside parentheses. Using Ito’s lemma on the log of the bond price P (T , T) = 1 
to get: 

 
 
As a result,



 

 
 
This implies the Girsonav transformation of the following: 
 

 
and this completes the proof.  
 



REFERENCES 
 
Arak, M. and L. Goodman, “Treasury Bond Futures: Valuing the Delivery Option,” 

Journal of Futures Markets, 1987. 
Benninga, S. and M. Smirlock, “An Empirical Analysis of the Delivery Option, Marking 

to Market, and the Pricing of Treasury Bond Futures,” Journal of Futures 
Markets, 1985. 

Boyle, P., “The Quality Option and Timing Option in Futures Contracts,” Journal of 
Finance, V44, No.1, March, 1989. 

Broadie, M. and S. Sundaresan, “The Pricing of Timing and Quality Options: An 
Application to Treasury Bond Futures Markets,” Working Paper, 1987. 

Carr, P., “Valuing Bond Futures and the Quality Option,” Working paper, UCLA, 1988. 
Carr, P. and R. Chen, “Valuing Bond Futures and the Quality Option,” Working paper,  

Rutgers University, November, 1996. 
Chen, R. and L. Scott, “Maximum Likelihood Estimation of a Multi-Factor Equilibrium 

Model of the Term Structure of Interest Rates,” Journal of Fixed Income, 1993. 
Chowdry, B., “Pricing of Futures with Quality Option,” Working paper, University of 

Chicago, December, 1986. 
Cox, J., J. Ingersoll, and S. Ross, “A Theory of The Term Structure of Interest Rates,” 

Econometrica, March, 1985. 
Cox, J., J. Ingersoll, and S. Ross, “The Relation Between Forward Prices and Futures 

Prices,” Journal of Financial Economics, p.321-346, 1981. 
Gay, G. and S. Manaster, Implicit Delivery Options and Optimal Delivery Strategies for 

Financial Futures Contracts, Journal of Financial Economics, Vol. 16, pp.41-72, 
1986. 

Gay, G. and S. Manaster, The Quality Option Implicit in Futures Contracts, Journal of 
Financial Economics, Vol. 13, pp. 353-370, 1984. 

Heath, D., R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest 
Rates: A New Methodology for Contingent Claims Valuation,” Econometrica , 
Vol. 60, No.1, January, 1992. 

Hedge, S., An Empirical Analysis of Implicit Delivery Options in the Treasury Bond  
Futures Contract, Journal of Banking and Finance, Vol. 12, pp. 469-492, 1988. 

Hedge, S., An Ex Post Valuation of the Quality Option in Treasury Bond Futures 
Contract, Journal of Banking and Finance, Vol. 14, pp. 741, 1990. 

Hemler, M., “The Quality Delivery Option in Treasury Bond Futures Contracts,” Journal 
of Finance, V45, No.5, December, 1990. 



Jamshidian, F., “An Exact Bond Option Formula,” Journal of Finance, 1989. 
Jamshidian, F.,“Pricing of Contingent Claims in The One-Factor Term StructureModel, ” 

Working Paper, Merrill Lynch Capital Markets, 1987. 
Jones, R., “Conversion Factor Risk in Treasury Bond Futures: Comment,” Journal of 

Futures Market, Vol. 5, No. 1, p. 115-119, 1985. 
Kane, A. and A. Macus, Conversion Factor Risk and Hedging in the Treasury Bond  

Futures Market, Journal of Futures Markets, Vol. 4, No. 1, pp. 55-64, 1984. 
Kane, A. and A. Macus, The Quality Option in the Treasury Bond Futures Market: An 

Empirical Assessment, Journal of Futures Markets, Vol. 6, No. 2, pp. 231-248, 
1986. 

Kane, A. and A. Macus, Valuation and Optimal Exercise of the Wild Card Option in the 
Treasury Bond Futures Market, Journal of Finance, Vol. 41, No. 1, pp. 195-207, 
1986. 

Kilcollin, T., “Difference Systems in Financial Futures Markets,” Journal of Finance, 
V37, 1982. 

Langetieg, T., “A Multivariate Model of the Term Structure,” Journal of Finance, Vol. 
35, No. 1, March, 1980. 

Livingston, M., “The Delivery Option on Forward Contracts,” Journal of Financial and 
Quantitative Analysis, V22, March, 1987. 

Margrabe, W., “The Value of an Option to Exchange One Asset for Another,” Journal of 
Finance, V33, p.177-186, 1978. 

Ritchken, P. and L. Sankarasubramanian, “Pricing the Quality Option in Treasury Bond  
Futures,” Mathematical Finance, V.2, No.3, p.197-214, July, 1992. 

Stulz, R., “Options on the Minimum or the Maximum of Two Risky Assets: Analysis and  
Applications,” Journal of Financial Economics, V10, p.161-185, 1982. 

Turnbull, S. and F. Milne, “A Simple Approach to Interest Rate Option Pricing,” Review 
of Financial Studies, Vol. 4, No. 1, 1991. 






