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Abstract

In this paper we re-examine the Geske-Johnson (1984) formula and extend

the analysis by deriving a modi¯ed Geske-Johnson formula that can overcome

the possibility of non-uniform convergence encountered in the original Geske-

Johnson formula. Furthermore, we propose a numerical method, the repeated

Richardson extrapolation, which allows us to estimate the interval of true op-

tion values and to determine the number of options needed for an approxima-

tion to achieve the desired accuracy. From the simulation results, our modi¯ed

Geske-Johnson formula is more accurate than the original Geske-Johnson for-

mula. This paper also illustrates that the repeated Richardson extrapolation

approach can estimate the interval of true American option values extremely

well. Finally we investigate the possibility of combining the Binomial Black and

Scholes method proposed by Broadie and Detemple (1996) with the repeated

Richardson extrapolation technique.

JEL Classi¯cation: G13

Keywords: American option, non-uniform convergence, Richardson extrapo-

lation, repeated Richardson extrapolation.



1 Introduction

In an important contribution, Geske and Johnson (1984) showed that it was pos-

sible to value an American-style option by using a series of options exercisable

at one of a ¯nite number of exercise points (known as Bermudan-style options).

They employed Richardson extrapolation techniques to derive an e±cient com-

putational formula using the values of Bermudan options. The Richardson

extrapolation techniques were afterwards used to enhance the computational

e±ciency and/or accuracy of American option pricing in two directions in the

literature. First, one can apply the Richardson extrapolation in the number of

time steps of binomial trees to price options. For example, Broadie and De-

temple (1996), Tian (1999), and Heston and Zhou (2000) apply a two-point

Richardson extrapolation to the binomial option prices. Second, the Richard-

son extrapolation method has been used to approximate the American option

prices with a series of options with an increasing number of exercise points. The

existing literature includes Breen (1991) and Bunch and Johnson (1992).

Two problems are recognized to exist with this methodology. First, as pointed

out by Omberg (1987), there may in the case of some options be the problem of

non-uniform convergence.1 In general, this arises when a Bermudan option with

n exercise points has a value that is less than that of an option with m exercise

points, where m < n. A second problem with the Geske-Johnson method is

1In the Geske-Johnson formula, they de¯ned P (1), P (2) and P (3) as follows: (i) P (1) is

a European option, permitting exercise at time T , the maturity date of the option; (ii) P (2)

is the value of a Bermudan option, permitting exercise at time T=2 or T ; (iii) P (3) is the

value of a Bermudan option, permitting exercise at time T=3, 2T=3, or T . If the Bermudan

option prices converge to the corresponding American option price uniformly from below, a

Bermudan option with more exercise points must be more valuable than the one with fewer

exercise points. In other words, P (1) < P (2) < P (3) < ¢ ¢ ¢. However, Omberg (1987) showed
a plausible example of a non-uniform convergence with a deep-in-the-money put option written

on a low volatility, high dividend paying stock going ex-dividend once during the term of the

option at time T=2. In this case, there is a high probability that the option will be exercised

at time T=2 immediately after the stock goes ex-dividend. Thus, P (2) could be greater than

P (3), and the problem of non-uniform convergence emerges.
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that it is di±cult to determine the accuracy of the approximation. How many

options and/or how many exercise points have to be considered in order to

achieve a given level of accuracy?

In this paper we examine these two problems under the Black-Scholes (1973)

economy (i.e., asset price following geometric Brownian motion, frictionless mar-

kets, continuous trading, constant interest rates, etc.). Following Omberg's

(1987) suggestion, we employ geometric exercise points in place of the arith-

metic exercise points used by Geske-Johnson. This allows us to derive a mod-

i¯ed Geske-Johnson formula which uses only the prices of Bermudan options

with uniform convergence property. The numerical results indicate that our

modi¯ed Geske-Johnson formula is generally more accurate than the original

Geske-Johnson formula.

Secondly, we employ a technique known as repeated Richardson approximation.2

Although the true American option price is generally unknown, Schmidt's (1968)

inequality allows us to specify the accuracy of a repeated Richardson approx-

imation. In other words, it helps to determine the smallest value of exercise

points (or time steps), n, that can solely be used in an option price approxima-

tion for the desired accuracy. Moreover, we also investigate the possibility of

combining the Binomial Black and Scholes (hereafter BBS) method proposed

by Broadie and Detemple (1996) with the repeated Richardson extrapolation

technique.

The plan of this paper is as follows. In section 2 we brie°y review the lit-

erature on the approximation of American-style option prices with a series of

Bermudan options with an increasing number of exercise points. This allows

us to specify the incremental contribution of our paper. In section 3 we in-

troduce the repeated Richardson extrapolation technique. Based on geometric

exercise points, we apply the repeated Richardson extrapolation to derive a

modi¯ed Geske-Johnson formula which overcomes the problem of non-uniform

convergence encountered in the original Geske-Johnson formula. This paper

2We will discuss the repeated Richardson approximation technique in detail in section 3.
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also shows how to employ Schmidt's (1968) inequality to determine accuracy of

the repeated Richardson extrapolation. In other words, it can tell us how many

options and/or exercise points have to be considered to achieve a given level of

accuracy. In section 4 we illustrate the methodology with numerical examples.

Section 5 concludes the paper.

2 Literature Review

In their original paper, Geske-Johnson show that an American put option can

be calculated to a high degree of accuracy using a Richardson approximation.

If P (n) is the price of a Bermudan option exercisable at one of n equally-spaced

exercise dates, then, for example, using P (1), P (2) and P (3), the price of the

American put is approximately

P (1; 2; 3) = P (3) +
7

2
(P (3)¡ P (2))¡ 1

2
(P (2)¡ P (1)); (1)

where P (1; 2; 3) denotes the approximated value of the American option using

the values of Bermudan options with 1, 2 and 3 possible exercise points.

In a subsequent contribution, Bunch and Johnson (1992) suggest a modi¯cation

of the Geske-Johnson method based on the use of an approximation

P (1; 2) = Pmax(2) + (Pmax(2)¡ P (1)); (2)

where Pmax(2) is the option's value exercisable at one of two points at time,

when the exercise points are chosen so as to maximize the option's value. They

showed that if the time steps are chosen so as to maximize P (2),3 then accurate

predictions of the American put price can be made with greater computational

e±ciency than in the case of the original Geske-Johnson method. Moreover, the

3Bunch and Johnson suggest that the time of the ¯rst exercise point of P (2) can be chosen

by examining seven time spaces at T=8, 2T=8, 3T=8, 4T=8, 5T=8, 6T=8, and 7T=8 and the

time of the second exercisable point is usually allocated at time T , the maturity date of the

option.
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Bunch and Johnson (1992) method can also avoid the non-uniform convergence

problem.

Omberg (1987) and Breen (1991) consider the Geske-Johnson method in the

context of binomial computations. Omberg (1987) shows that there may be

a problem of non-uniform convergence since P (2) in equation (1) is computed

using exercise points at time T and T=2, where T is the time to maturity of

option, and P (3) is computed using exercise points at time T=3, 2T=3, and T .

If the option is a deep-in-the-money put option written on a low volatility, high

dividend paying stock going ex-dividend once during the term of the option

at time T=2, there is a high probability that the option will be exercised at

time T=2 immediately after the stock goes ex-dividend. Therefore P (3) is not

always greater than P (2). Although Breen (1991) also points out the above

mentioned problem of non-uniform convergence, he still suggests and tests a

binomial implementation of the original Geske-Johnson formula.

It is well known that convergence of a binomial option price to the true price is

not uniform, but oscillatory, in the step size (see for example, Broadie and De-

temple (1996) and Tian (1999)). The non-uniform convergence limits the use of

extrapolation techniques in binomial option pricing models to enhance the rate

of convergence. As a result, several papers in the literature have modi¯ed the

Cox, Ross, and Rubinstein's (1979) (CRR) binomial model to produce uniform

convergence. Among them, Broadie and Detemple (1996) propose a method

term Binomial Black and Scholes (hereafter BBS) model which gives uniform

convergence prices. The BBS method is a modi¯cation to the binomial method

where the Black-Scholes formula replaces the usual \continuation value" at the

time step just before option maturity.

Due to the uniform convergence property of the BBS method, Broadie and

Detemple (1996) also suggest a method term Binomial Black and Scholes model

with Richardson extrapolation (BBSR). In particular, the BBSR method with

n steps computes the BBS prices corresponding to m = n=2 steps (say Pm) and

n steps (say Pn) and then sets the BBSR price to P = 2Pn ¡ Pm. In addition
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to Broadie and Detemple's (1996) simple two-point Richardson extrapolation,

this paper examines the possibility of combining the BBS method with repeated

Richardson extrapolation technique.

3 The Repeated Richardson Extrapolation Tech-

nique

3.1 The Repeated Richardson Extrapolation Algorithm

Often in numerical analysis, an unknown quantity, a0 (e.g. the value of an

American option in our case), is approximated by a calculable function, F (h),

depending on a parameter h > 0, such that F (0) = limh!0 F (h) = a0.
4 If

we know the complete expansion of the truncation error about the function

F (h), then we can perform the repeated Richardson extrapolation technique to

approximate the unknown value a0. Assume that

F (h) = a0 + a1h
°1 + a2h

°2 + : : :+ akh
°k +O(h°k+1) (3)

with known exponents °1, °2, °3, ¢ ¢ ¢ and °1 < °2 < °3 ¢ ¢ ¢, but unknown a1,
a2, a3, etc., where O(h

°k+1) denotes a quantity whose size is proportional to

h°k+1 , or possibly smaller. According to Schmidt (1968), we can establish the

following algorithm when °j = °j, j = 1:::k.

Algorithm:

For i = 1; 2; 3; ¢ ¢ ¢, set Ai;0 = F (hi), and compute for m = 1; 2; 3; ¢ ¢ ¢ ; k ¡ 1.

Ai;0 = F (hi)

4The parameter h corresponds to the length between two exercise points of a Bermudan

option in the Geske-Johnson approach. The American option value is therefore the limit of a

Bermudan option value as h goes to zero.
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Ai;m = Ai+1;m¡1 +
Ai+1;m¡1 ¡Ai;m¡1
(hi=hi+m)

° ¡ 1 ; (4)

where Ai;m is an approximate value of a0 obtained from an m times repeated

Richardson extrapolation using step sizes of hi, hi+1, ¢ ¢ ¢, hi+m, and 0 < m ·
k ¡ 1.

The computations can be conveniently set up in the following scheme

hi Ai;0 Ai;1 Ai;2 Ai;3 : : :

h1 A1;0 A1;1 A1;2 A1;3

h2 A2;0 A2;1 A2;2

h3 A3;0 A3;1

h4 A4;0
...

It should be noted that a repeated Richardson extrapolation will give the same

results as those of polynomial Richardson extrapolation methods when the same

expansion of the truncation error is used.5 As an illustration, in the followings

we set ° = 1, k = 3 and apply the repeated Richardson extrapolation technique

to derive the approximation formulae for American options using arithmetic

exercise points (Geske-Johnson formula) and geometric exercise points (modi¯ed

Geske-Johnson formula), respectively.

3.2 The Geske-Johnson Formulae

In the original Geske-Johnson formulae, they use arithmetic exercise points and

set the step sizes as follows: h1 = h, h2 = h=2, h3 = h=3, where h equals

the maturity of the option, T . De¯ne P (1) = A1;0 (h), the European option

5For a rigorous proof of this statement, please refer to Atkinson (1989).
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value permitting exercise only at period h, P (2) = A2;0 (h=2), the Bermudan-

style option value permitting exercise only at period h=2 and h, and P (3) = A3;0

(h=3), the Bermudan-style option value permitting exercise at period h=3, 2h=3,

and h only. By applying the repeated Richardson extrapolation algorithm in

equation (4), we can obtain two two-point and one three-point Geske-Johnson

formulae, respectively, as follows:

A1;1 = P (1; 2) = 2P (2)¡ P (1); (5)

A2;1 = P (2; 3) =
3

2
P (3)¡ 1

2
P (2); (6)

A1;2 = P (1; 2; 3) =
9

2
P (3)¡ 4P (2) + 1

2
P (1): (7)

It should be noted that P (1; 2) and P (1; 2; 3) are the original Geske and John-

son's two-point and three-point approximation formulae, respectively.

3.3 The Modi¯ed Geske-Johnson Formulae

From the previous review of the Geske-Johnson approximation method, we ¯nd

that it is possible for the condition, P (1) < P (2) > P (3), to occur. Thus,

the problem of non-uniform convergence will emerge. To solve this problem,

we follow Omberg's suggestion to construct the approximating sequence so that

each opportunity set includes the previous one, and therefore is at least as good,

by using geometric exercise points [1; 2; 4; 8; :::] generated by successively dou-

bling the number of uniformly-spaced exercise dates, rather than the arithmetic

exercise points [1; 2; 3; 4; ::] employed by Geske-Johnson.

If we use geometric exercise points employed in the modi¯ed Geske-Johnson

formula, we can set the time steps as follows: h1 = h, h2 = h=2, h3 = h=4,

where h equals the maturity of the option, T . De¯ne P (1) = A1;0 (h), the

European option value permitting exercise only at period h, P (2) = A2;0 (h=2),

the Bermudan-style option value permitting exercise only at period h=2 and h,

and P (4) = A3;0 (h=4), the Bermudan-style option value permitting exercise at

period h=4, 2h=4, 3h=4, and h only. Again we can apply the repeated Richardson
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extrapolation algorithm to derive two two-point and one three-point modi¯ed

Geske-Johnson formulae, respectively, as follows:

A1;1 = P (1; 2) = 2P (2)¡ P (1); (8)

A2;1 = P (2; 4) = 2P (4)¡ P (2); (9)

A1;2 = P (1; 2; 4) =
8

3
P (4)¡ 2P (2) + 1

3
P (1): (10)

Because we use geometric exercise points, we can ensure that P (4) ¸ P (2) ¸
P (1) always holds in equations (8) to (10). The reason for this is that the

exercise points of P (4) include all the exercise points of P (2), while the exer-

cise points of P (2) include all the exercise points of P (1). Thus, the modi¯ed

Geske-Johnson formula is able to overcome the shortcomings of non-uniform

convergence encountered in the original Geske-Johnson formula.6

3.4 The Error Bounds and Predictive Intervals of Amer-

ican Option Values

One speci¯c advantage in using a repeated Richardson extrapolation is that we

can obtain the error bounds of the approximation and thus predict the interval

of the true American option values. In other words, the repeated Richardson ex-

trapolation technique allows us to determine the accuracy of the approximation

and also how many options or how many exercise points have to be considered in

order to achieve a given accuracy. This can be done by applying the Schmidt's

(1968) inequality.

6However we need a four dimensional normal integral while Geske and Johnson only need

a three dimensional normal integral.
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Schmidt's Inequality

Schmidt (1968) shows that it always holds

¯̄̄
Ai;m+1 ¡ F (0)

¯̄̄
·
¯̄̄
Ai;m+1 ¡ Ai;m

¯̄̄
; (11)

when i is su±ciently large7 and m is under the constraint, 0 < m · k ¡ 1.8
Here, F (0) is the true American option value, and Ai;m is the approximate value

of F (0) obtained from using the m-times repeated Richardson extrapolation.

When Schmidt's inequality holds (i.e. when i is su±ciently large), we know

that (i) the error of the approximation Ai;m+1 is smaller than
¯̄̄
Ai;m+1 ¡ Ai;m

¯̄̄
,

(ii) if the desired accuracy is ² and i and m are the smallest integers that¯̄̄
Ai;m+1 ¡ Ai;m

¯̄̄
· ² holds, then the approximation Ai;m+1 is accurate enough

for the desired accuracy. Furthermore we know that m + 2 Bermudan options

with step sizes, hi, hi+1, ¢ ¢ ¢, hi+m+1, have to be considered to achieve the
desired accuracy. (iii) The true value of the American option is within the

range
³
Ai;m+1 ¡

¯̄̄
Ai;m+1 ¡ Ai;m

¯̄̄
; Ai;m+1 +

¯̄̄
Ai;m+1 ¡ Ai;m

¯̄̄´
.

7In the literature, mathematicians note that it is very di±cult to say how large i must be

in order to ensure that Ai;m and Ui;m ( Ui;m is de¯ned in Appendix) are the upper or lower

bound of F (0). However, they suggest that, for practical purpose, the extrapolation should

be stopped \if a ¯nite number of Ai;m and Ui;m decrease or increase monotonically, and if¯̄̄
Ai;m ¡ Ui;m

¯̄̄
is small enough for accuracy." Apart from using the above suggestion, from

Tables 4 and 5 we found out that when i = 2 and m = 1, m = 2, or m = 3, there are only a

very low percentage violate the inequality. However, the violation of error boundaries is not

very signi¯cant. Thus, we can ignore them.

8The proof of this inequality is presented in the Appendix following Schmidt (1968).
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4 Numerical Analysis

4.1 Choosing the Benchmark Method

The accurate American option values are generally unknown and are usually

estimated using CRR binomial method with a very large number (say 10; 000)

of time steps. However we need very accurate American option values for the

following analyses. One of the most accurate binomial method in the literature

is the BBSR method proposed by Broadie and Detemple (1996). Therefore we

compare the accuracy of the CRR and BBSR models to decide the benchmark

method.

The accuracy of the CRR and BBSR models is examined for European put

options because their accurate values (Black-Scholes) are known. The root-

mean-squared (hereafter RMS) relative error is used as the measure of accuracy.

The RMS error is de¯ned by

RMS =

vuut1
j

jX
k=1

ek2; (12)

where ek = (P
¤
k ¡Pk)=Pk is the relative error, Pk is the true option price (Black-

Scholes), P ¤k is the estimated option price using each method with 10800 time

steps, and j is the number of options considered. Following Broadie and Detem-

ple (1996), we price a large set (j = 243) of options with practical parameters:

K = 100; S = 90, 100, 110; ¾ = 0:2, 0.3, 0.4; T = 0:25, 0.5, 1.0; r = 0:03, 0.08,

0.13; and q = 0, 0.02, 0.04.

It is clear from Table 1 that the RMS relative error of the BBSR method

(0.0000448%) is far smaller than that of the CRR method (0.00301%). Our

result is consistent with the ¯ndings of Broadie and Detemple (1996). There-

fore, we will use the BBSR method with 10800 steps to calculate benchmark

prices of American options in the following analyses.

10



4.2 The Accuracy of the Geske-Johnson Formulae vs.

the Modi¯ed Geske-Johnson Formulae

In this section we compare the accuracy of the Geske-Johnson formulae with

that of the Modi¯ed Geske-Johnson formulae. As an illustration, we ¯rst study

the accuracy of only a three-point approximation for both methods. In other

words, we investigate the accuracy of P (1; 2; 3) and P (1; 2; 4) in equations (7)

and (10). To evaluate P (2), P (3), and P (4), we implement two-, three-, and

four-dimensional normal integrals, respectively, using the IMSL subroutines for

FORTRAN language.

In Table 2, we show the accuracy of a three-point Geske-Johnson formula and

that of a three-point modi¯ed Geske-Johnson formula. It is evident from Table

2 that the modi¯ed Geske-Johnson formula generally produces more accurate

approximation than the original Geske-Johnson formula. From Table 2, we ¯nd

that the modi¯ed Geske-Johnson formula is more accurate for 21 out of 27

options.

We now turn to a detail analysis of the accuracy of the Richardson extrapolation

for the number of exercise points to estimate American option values. Both

arithmetic and geometric exercise points are examined. The analysis is based

on ¯ve (i.e. i = 1; 2; ¢ ¢ ¢ ; 5:) di®erent step sizes and up to four repeated times
in the Richardson extrapolation. As before we use 243 options to conduct the

analysis and use the RMS relative error as the measure of accuracy.

Table 3 shows the RMS relative errors in pricing American options using the re-

peated Richardson extrapolation with arithmetic and geometric exercise points.

The true values of all Bermudan options are estimated by the BBSR method

with 10; 800 steps.9 The results indicate that the pricing errors of geometric

9Although the analytic solutions are available for P (5), P (8), and P (16), however their

evaluations involve high dimensional numerical integration. Therefore we use the BBSR

method with 10; 800 steps to calculate the accurate values for all Bermudan options for

consistency.

11



exercise points are smaller than that of arithmetic exercise points. This ¯nd-

ing supports that a Richardson extrapolation with geometric exercise points

can avoid the problem of non-uniform convergence. Moreover, the repeated

Richardson extrapolation technique can further reduce the pricing errors. In

other words, an (n+1)-point Richardson extrapolation generally produces more

accurate prices than an n-point Richardson extrapolation. For example, Panel

B shows that the RMS relative errors of A1;2 (obtained from a three-point

Richardson extrapolation of P (1), P (2), and P (4)) is 0.346 %, which is smaller

than that (1.061 %) of A1;1 (obtained from a two-point Richardson extrapola-

tion of P (1) and P (2)) and that (0.427 %) of A2;1 (obtained from a two-point

Richardson extrapolation of P (2) and P (4)).

4.3 The Validity of Schmidt's Inequality

One speci¯c advantage of the repeated Richardson extrapolation is that it allows

us to specify the accuracy of an approximation to the unknown true option price.

That is, the Schmidt's inequality can be used to predict tight upper and lower

bounds (with desired tolerable errors) of the true option values. We test the

validity of the Schmidt's inequality over 243 options for both geometric and

arithmetic exercise points in Tables 4 and 5, respectively. The denominator

represents the number of options whose price estimates match
¯̄̄
Ai;m+1¡Ai;m

¯̄̄
<

the desired errors, and the numerator is the number of options whose price

estimates match
¯̄̄
Ai;m+1¡F (0)

¯̄̄
< the desired errors and

¯̄̄
Ai;m+1¡Ai;m

¯̄̄
< the

desired errors.

The results in Tables 4 and 5 indicate that increasing i or m will increase the

number of price estimates with errors less than the desired accuracy. It is also

clear that the Schmidt inequality is seldom violated especially when i or m is

large (i = 3; 4 and m = 2; 3). For example, when i = m = 2, 228 out of

243 option price estimates have errors smaller than 0:2% of the European op-

tion value, and 225 out of these 228 option price estimates satisfy Schmidt's

12



inequality. Moreover, the ¯ndings support that the repeated Richardson ex-

trapolation with geometric exercise points works better than with arithmetic

exercise points. This supports the previous result that a Richardson extrap-

olation with geometric exercise points can avoid the problem of non-uniform

convergence.

4.4 The Accuracy of the BBS Method with Repeated

Richardson Extrapolation Techniques

In this subsection we investigate the possibility of combining the BBS method

with the repeated Richardson extrapolation technique. We apply the BBS

method with a repeated Richardson extrapolation in number of time steps to

price European put options, because the true prices are easy to calculate. Both

the arithmetic and geometric time steps are analyzed. As before, we choose 243

options with practical parameters: K = 100; S = 90, 100, 110; ¾ = 0:2, 0.3,

0.4; T = 0:25, 0.5, 1.0; r = 0:03, 0.08, 0.13; and q = 0, 0.02, 0.04.

Many points can be drawn from Table 6. First, it is clear from the third column

of Table 6 that the pricing error of an N-step BBS model for standard options

is at the rate of O(1=N ). In contrast, Heston and Zhou (2000) show that the

pricing error of an N-step CRR model °uctuates between the rate of O(1=
p
N)

and O(1=N ). As a result, the BBSR method with geometric time steps produces

very accurate prices for European options (see the fourth column of Panel B in

Table 6). Second, the pricing errors from geometric time steps are far smaller

than that of arithmetic time steps. Third, Table 6 reveals that the repeated

Richardson extrapolation in time steps cannot further improve the accuracy.

For example, Panel B shows that the pricing error of A4;1 (obtained from a two-

point Richardson extrapolation of BBS prices with 160 and 320 steps) is actually

smaller than that of A3;2 (obtained from a three-point Richardson extrapolation

of BBS prices with 80, 160, and 320 steps).
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5 Conclusion

In this paper we re-examine the original Geske-Johnson formula. We ¯rst extend

the analysis by deriving a modi¯ed Geske-Johnson formula which is able to

overcome the possibility of non-uniform convergence encountered in the original

Geske-Johnson formula. Another contribution of this paper is that we propose a

numerical method which can estimate the predicted intervals of the true option

values when the accelerated binomial option pricing models are used to value

the American-style options.

The ¯ndings are summarized as follows: (i) The modi¯ed Geske-Johnson for-

mula is a better approximation of American option price than the original Geske-

Johnson formula. This is not surprised because the modi¯ed Geske-Johnson for-

mula can overcome the non-uniform convergence problem. (ii) Using Schmidt's

inequality, we are able to obtain the intervals of the true American option val-

ues. This helps to specify the accuracy of an approximation to the unknown

true option price and to determine the number of options that can solely be

used in an option price approximation. This article probably is the ¯rst one

to discuss how to get the predicted intervals of the true option values in the

¯nance literature. We believe that the repeated Richardson method will be very

useful for practitioners to predict the intervals of the true option values. (iii)

The Richardson extrapolation approach can improve the computational accu-

racy for the BBS method proposed by Broadie and Detemple (1996), while two-

or more- times repeated Richardson extrapolation technique cannot.
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Appendix: The Proof of Schmidt's Inequality

In this appendix we prove that
¯̄̄
Ai;m+1¡ F (0)

¯̄̄
·
¯̄̄
Ai;m+1 ¡Ai;m

¯̄̄
is always true

when i is su±ciently large and m is under the constraint, 0 < m · k¡1, where
k is the order of powers of the expansion of truncation errors. Let F (h) be the

appropriate solution gained through discretization for a problem. We assume

that F (h) can be developed for the parameter h > 0

F (h) = a0 + a1h
°1 + a2h

°2 + : : :+ akh
°k +O(h°k+1); (13)

where °1 < °2 < °3 < :::: < °k+1. The solution of the original problem is

F (0) = limh!0 = a0.

Schmidt (1968) shows that, when °k = °k + ± and hi+1=hi · ½ · 1 (½ is a

constant and 0 · ½ · 1 ), iterative extrapolation can be carried out according
to the following procedure

Ai;0 = F (hi)

Hi;0 = hi
¡±;

Ai;m = Ai+1;m¡1 +
Ai+1;m¡1 ¡ Ai;m¡1

Di;m¡1 ¡ 1 ;

Hi;m = Hi+1;m¡1 +
Hi+1;m¡1 ¡Hi;m¡1
[hi=hi+m]° ¡ 1 ; (14)

where

Di;m =
hi
°Hi+1;m¡1

h
°
i+mHi;m¡1

;

and 0 < m · k ¡ 1.

If ± is equal to zero (i.e. °k = °k ), then Hi;m is equal to one. Thus, equation

(14) can be reduced to the following equation

Ai;0 = F (hi)

Ai;m = Ai+1;m¡1 +
Ai+1;m¡1 ¡Ai;m¡1

Di;m¡1 ¡ 1 ; (15)

where

Di;m = [hi=hi+m]
°:
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Schmidt de¯ned Ui;m as the following

Ui;m = (1 + ¯)Ai+1;m ¡ ¯Ai;m; (16)

where

¯ = 1 +
2

[hi=hi+m+1]° ¡ 1 = 1 +
2

Di;m+1 ¡ 1 :

According to the proof of theorem 2 in Schmidt's paper, we can get equation

(17) when i is su±ciently large, m is under the constraint, 0 < m · k ¡ 1 and
am+1 (m = 1; ::k ¡ 1) is not equal to zero, i.e.

Ai;m · F (0) · Ui;m;
or Ui;m · F (0) · Ai;m: (17)

This is equivalent to¯̄̄
[Ai;m + Ui;m]=2¡ F (0)

¯̄̄
· 1

2

¯̄̄
Ui;m ¡ Ai;m

¯̄̄
: (18)

Rearranging the de¯nition of Ui;m in equation (16), we obtain the following

equation
1

2
(Ai;m + Ui;m) =

1

2
(1 + ¯)Ai+1;m +

1

2
(1¡ ¯)Ai;m (19)

Furthermore, from the de¯nition of ¯ in equation (16), we are able to get the

following relationship

1 + ¯ = 2

Ã
1 +

1

Di;m+1 ¡ 1
!
;

1¡ ¯ =
¡2

Di;m+1 ¡ 1 : (20)

Substituting equation (20) into equation (19) and referring to equation (15), we

obtain
1

2
(Ai;m + Ui;m) = Ai;m+1: (21)

Similarly, we also can acquire the following relationship

1

2
(Ui;m ¡ Ai;m) = Ai;m+1 ¡Ai;m: (22)

Finally, substituting equations (21) and (22) into equation (18), we obtain

Schmidt's inequality ¯̄̄
Ai;m+1 ¡ F (0)

¯̄̄
·
¯̄̄
Ai;m+1 ¡ Ai;m

¯̄̄
: (23)
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Table 1:

The root-mean-squared (RMS) relative errors using the binomial

and BBSR methods to price European options

binomial BBSR

3.01E-05 4.48E-07

The options are European put options. The root-mean-squared relative errors are de¯ned as

follows:

RMS =

vuut1

j

jX
k=1

e2k;

where ek = (P¤k ¡ Pk)=Pk is the relative error, Pk is the true option price (Black-Scholes),
and P¤k is the estimated option price. The number of steps in each method is 10,800. The

strike price (K) is 100. There are 243 options with practical parameters: S =90, 100, 110;

¾=0.2, 0.3, 0.4; T=0.25, 0.5, 1 years; r=3, 8, 13%; and q=0, 2, 4%.
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Table 2:

Valuation of American Put Options

(1) (2) (3) (4) (5) (6)
(6)¡(5)
(5)

(7)
(7)¡(5)
(5)

K ¾ T P (1) P (1) P (1; 2; 3) % P (1; 2; 4) %

35 0.2 0.0833 0.0062 0.0062 0.0062 -0.484% 0.0062 -0.416%

35 0.2 0.3333 0.1960 0.2004 0.1999 -0.255% 0.1999 -0.234%

35 0.2 0.5833 0.4170 0.4329 0.4326 -0.066% 0.4325 -0.093%

40 0.2 0.0833 0.8404 0.8523 0.8521 -0.027% 0.8522 -0.015%

40 0.2 0.3333 1.5222 1.5799 1.5760 -0.251% 1.5772 -0.174%

40 0.2 0.5833 1.8813 1.9906 1.9827 -0.395% 1.9847 -0.297%

45 0.2 0.0833 4.8399 5.0000 4.9969 -0.062% 4.9973 -0.055%

45 0.2 0.3333 4.7805 5.0884 5.1053 0.332% 5.1027 0.281%

45 0.2 0.5833 4.8402 5.2671 5.2893 0.421% 5.2850 0.340%

35 0.3 0.0833 0.0771 0.0775 0.0772 -0.273% 0.0773 -0.219%

35 0.3 0.3333 0.6867 0.6976 0.6973 -0.049% 0.6972 -0.063%

35 0.3 0.5833 1.1890 1.2199 1.2199 -0.005% 1.2197 -0.020%

40 0.3 0.0833 1.2991 1.3102 1.3103 0.010% 1.3103 0.007%

40 0.3 0.3333 2.4276 2.4827 2.4801 -0.105% 2.4811 -0.065%

40 0.3 0.5833 3.0636 3.1698 3.1628 -0.221% 3.1651 -0.149%

45 0.3 0.0833 4.9796 5.0598 5.0631 0.065% 5.0623 0.049%

45 0.3 0.3333 5.5290 5.7058 5.7019 -0.068% 5.7017 -0.071%

45 0.3 0.5833 5.9725 6.2438 6.2368 -0.112% 6.2367 -0.113%

35 0.4 0.0833 0.2458 0.2467 0.2463 -0.163% 0.2464 -0.128%

35 0.4 0.3333 1.3298 1.3462 1.3461 -0.004% 1.3459 -0.021%

35 0.4 0.5833 2.1129 2.1550 2.1553 0.011% 2.1550 0.000%

40 0.4 0.0833 1.7579 1.7685 1.7688 0.017% 1.7687 0.010%

40 0.4 0.3333 3.3338 3.3877 3.3863 -0.041% 3.3869 -0.022%

40 0.4 0.5833 4.2475 4.3529 4.3475 -0.123% 4.3496 -0.077%

45 0.4 0.0833 5.2362 5.2870 5.2848 -0.041% 5.2851 -0.036%

45 0.4 0.3333 6.3769 6.5100 6.5015 -0.130% 6.5035 -0.100%

45 0.4 0.5833 7.1657 7.3832 7.3696 -0.184% 7.3726 -0.144%

The ¯rst four columns are from Table 1 of Geske and Johnson (1984). Columns (1) to (3)

represent the parameter input forK, the option strike price, ¾, the volatility of the underlying

asset, and T , the time to expiration. Column (4) shows the European put option values, P (1).

Column (5) shows the benchmark values of American put options obtained from the BBSR

method with 10,800 steps, P (1). Column (6) shows the three-point GJ American put option
values, P (1; 2; 3), using P (1), P (2), and P (3). Column (7) reports the results of our three-

point modi¯ed GJ approximation formula, P (1; 2; 4), using P (1), P (2), and P (4). The risk

free rate r is 0.05 and the initial stock price S is 40.
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Table 3:

The RMS relative errors using the repeated Richardson extrapolation

in number of exercisable points to estimate American option values

Panel A: arithmetic exercise points

i Ai;0 hi Ai;0 Ai;1 Ai;2 Ai;3 Ai;4

1 P(1)=A1;0 h1 = h 0.09184 0.01061 0.00432 0.00200 0.00122

2 P(2)=A2;0 h2 = h=2 0.04678 0.00537 0.00215 0.00121

3 P(3)=A3;0 h3 = h=3 0.03160 0.00327 0.00137

4 P(4)=A4;0 h4 = h=4 0.02392 0.00226

5 P(5)=A5;0 h5 = h=5 0.01925

Panel B: geometric exercise points

i Ai;0 hi Ai;0 Ai;1 Ai;2 Ai;3 Ai;4

1 P (1) = A1;0 h1 = h 0.09184 0.01061 0.00346 0.00116 0.00051

2 P (2) = A2;0 h2 = h=2 0.04678 0.00427 0.00122 0.00053

3 P (4) = A3;0 h3 = h=4 0.02392 0.00159 0.00057

4 P (8) = A4;0 h4 = h=8 0.01215 0.00074

5 P (16) = A5;0 h5 = h=16 0.00614

The options are American put options. The RMS relative errors are de¯ned as follows:

RMS =

vuut1

j

jX
k=1

e2k;

where ek = (P
¤
k ¡Pk)=Pk is the relative error, Pk is the true American option price (estimated

by the BBSRmethod with 10,800 steps), and P¤k is the estimated option price. The true values

of P (1), P (2),: : :, P (5) in the arithmetic case and the true values of P (1), P (2),: : :, P (16) in

the geometric case are estimated by the BBSR method with 10,800 steps. The strike price

(K) is 100. There are 243 options with practical parameters: S=90, 100, 110;¾=0.2, 0.3, 0.4;

T=0.25, 0.5, 1 years; r=3, 8, 13%; and q=0, 2, 4%.
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Table 4:

The Validity of the Schmidt Inequality when the Repeated Richardson

Extrapolation Is Used in Geometric Exercise Points

Panel A: desired error=1% ¤ P (1)
Q
Q
Q
Q
Q
QQ

i

(m;m+ 1)

(0,1) (1,2) (2,3) (3,4)

1 61
66
(92:4%) 173

178
(97:2%) 238

238
(100%) 243

243
(100%)

2 74
74
(100%) 235

235
(100%) 243

243
(100%)

3 109
109
(100%) 243

243
(100%)

4 171
171
(100%)

Panel B: desired error=0:2% ¤ P (1)
Q
Q
Q
Q
Q
QQ

i

(m;m+ 1)

(0,1) (1,2) (2,3) (3,4)

1 27
63
(75%) 43

60
(71:7%) 149

156
(95:5%) 227

228
(99:6%)

2 29
29
(100%) 118

120
(98:3%) 225

228
(98:7%)

3 36
36
(100%) 213

214
(99:5%)

4 53
53
(100%)

Panel C: desired error=0:05% ¤ P (1)
Q
Q
Q
Q
Q
QQ

i

(m;m+ 1)

(0,1) (1,2) (2,3) (3,4)

1 18
21
(85:7%) 21

27
(77:8%) 84

94
(89:4%) 150

158
(94:9%)

2 16
16
(100%) 45

48
(93:8%) 167

181
(92:3%)

3 21
21
(100%) 123

124
(99:2%)

4 26
26
(100%)

The denominator represents the number of option price estimates that match jAi;m+1 ¡
Ai;mj < the desired errors, and the numerator is the number of option price estimates that

match jAi;m+1 ¡ F (0)j < the desired errors and jAi;m+1 ¡ Ai;mj < the desired errors. The

number in the bracket represents the percentage that the Schmidt inequality is sustained.
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Table 5:

The Validity of the Schmidt Inequality when the Repeated Richardson

Extrapolation Is Used in Arithmetic Exercise Points

Panel A: desired error=1% ¤ P (1)
Q
Q
Q
Q
Q
QQ

i

(m;m+ 1)

(0,1) (1,2) (2,3) (3,4)

1 61
66
(92:4%) 170

180
(94:4%) 233

234
(99:6%) 243

243
(100%)

2 78
78
(100%) 288

289
(99:6%) 242

242
(100%)

3 97
97
(100%) 240

240
(100%)

4 109
109
(100%)

Panel B: desired error=0:2% ¤ P (1)
Q
Q
Q
Q
Q
QQ

i

(m;m+ 1)

(0,1) (1,2) (2,3) (3,4)

1 27
36
(75%) 44

62
(71%) 128

142
(90:1%) 180

188
(95:7%)

2 29
29
(100%) 90

103
(87:4%) 185

192
(96:4%)

3 34
34
(100%) 143

151
(94:7%)

4 38
38
(100%)

Panel C: desired error=0:05% ¤ P (1)
Q
Q
Q
Q
Q
QQ

i

(m;m+ 1)

(0,1) (1,2) (2,3) (3,4)

1 18
21
(85:7%) 19

27
(70:4%) 54

60
(90%) 81

105
(77:1%)

2 16
16
(100%) 36

43
(83:7%) 100

116
(86:2%)

3 19
19
(100%) 53

63
(92:1%)

4 21
21
(100%)

The denominator represents the number of option price estimates that match jAi;m+1 ¡
Ai;mj < the desired errors, and the numerator is the number of option price estimates that

match jAi;m+1 ¡ F (0)j < the desired errors and jAi;m+1 ¡ Ai;mj < the desired errors. The

number in the bracket represents the percentage that the Schmidt inequality is sustained.
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Table 6:

The RMS relative errors using the BBS with the repeated Richardson

extrapolation in number of time steps to price European options

Panel A: arithmetic time steps

i number of steps Ai;0 Ai;1 Ai;2 Ai;3 Ai;4

1 20 0.00430 0.00020 0.00095 0.00076 0.00058

2 40 0.00220 0.00073 0.00078 0.00059

3 60 0.00146 0.00076 0.00061

4 80 0.00111 0.00065

5 100 0.00088

Panel B: geometric time steps

i number of steps Ai;0 Ai;1 Ai;2 Ai;3 Ai;4

1 20 0.00430 0.00020 0.00014 7.41E-05 4.23E-05

2 40 0.00220 7.44E-05 5.10E-05 3.64E-05

3 80 0.00111 2.60E-05 2.74E-05

4 160 0.00056 1.60E-05

5 320 0.00028

The options are European put options. The RMS relative errors are de¯ned as follows:

RMS =

vuut1

j

jX
k=1

e2k;

where ek = (P¤k ¡ Pk)=Pk is the relative error, Pk is the true option price (Black-Scholes),
and P¤k is the estimated option price. The strike price (K) is 100. There are 243 options with

practical parameters: S=90, 100, 110; ¾=0.2, 0.3, 0.4; T=0.25, 0.5, 1 years, r=3, 8, 13%; and

q=0, 2, 4%. Note that Ai;0, Ai;1 correspond to the BBS and BBSR methods of Broadie and

Detemple (1996), respectively.
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